A new construction of bent functions based on Z-bent functions

نویسندگان

  • Sugata Gangopadhyay
  • Anand Joshi
  • Gregor Leander
  • Rajendra Kumar Sharma
چکیده

Dobbertin has embedded the problem of construction of bent functions in a recursive framework by using a generalization of bent functions called Z-bent functions. Following his ideas, we generalize the construction of partial spreads bent functions to partial spreads Z-bent functions of arbitrary level. Furthermore, we show how these partial spreads Z-bent functions give rise to a new construction of (classical) bent functions. We underline the variety given by this construction by showing that all bent function in 6 variables can be constructed in this way.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New constructions of quaternary bent functions

In this paper, a new construction of quaternary bent functions from quaternary quadratic forms over Galois rings of characteristic 4 is proposed. Based on this construction, several new classes of quaternary bent functions are obtained, and as a consequence, several new classes of quadratic binary bent and semi-bent functions in polynomial forms are derived. This work generalizes the recent wor...

متن کامل

Construction methods for generalized bent functions

Generalized bent (gbent) functions is a class of functions f : Z 2 → Zq, where q ≥ 2 is a positive integer, that generalizes a concept of classical bent functions through their codomain extension. A lot of research has recently been devoted towards derivation of the necessary and sufficient conditions when f is represented as a collection of Boolean functions. Nevertheless, apart from the neces...

متن کامل

New infinite families of p-ary weakly regular bent functions

The characterization and construction of bent functions are challenging problems. The paper generalizes the constructions of Boolean bent functions by Mesnager [33], Xu et al. [40] and p-ary bent functions by Xu et al. [41] to the construction of p-ary weakly regular bent functions and presents new infinite families of p-ary weakly regular bent functions from some known weakly regular bent func...

متن کامل

Cryptographer's Toolkit for Construction of 8-Bit Bent Functions

Boolean functions form basic building blocks in various cryptographic algorithms. They are used for instance as filters in stream ciphers. Maximally non-linear (necessarily non-balanced) Boolean functions with an even number of variables are called bent functions. Bent functions can be modified to get balanced highly non-linear Boolean functions. Recently the first author has demonstrated how b...

متن کامل

Association schemes arising from bent functions

We give a construction of 3-class and 4-class association schemes from s-nonlinear and differentially 2s-uniform functions, and a construction of p-class association schemes from weakly regular p-ary bent functions, where p is an odd prime.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010